直流非平衡电桥

实验报告

信息科学技术学院 李毅 PB22051031 教室: 一教 1215 座位号: 2

2023年10月16日

摘要

直流非平衡电桥是一种精密的测量电阻的仪器,本次实验中我们了解了其工作和组成原理,应 用外接电阻箱法研究了非平衡电桥的输出的线性范围和灵敏度,并且还研究了桥臂电阻对非平衡 电桥的输出的线性范围和灵敏度的影响。最后我们利用所搭建的非平衡电桥,测量铜丝的电阻温 度系数。

第一部分 实验背景介绍

直流电桥是一种精密的电阻测量仪器,在实际工程和科学实验中具有重要的应用价值。根据 测量方式,电桥可分为平衡电桥和非平衡电桥。

平衡电桥通过将待测电阻与标准电阻进行比较,通过调节电桥使其平衡,从而得到待测电阻的值。常见的平衡电桥包括单臂直流电桥(如惠斯登电桥)和双臂直流电桥(如开尔文电桥)。然而,平衡电桥只适用于测量具有相对稳定状态的物理量。

在实际工程和科学实验中,很多物理量是连续变化的,无法使用平衡电桥来测量。因此,需 要使用非平衡电桥来测量这些物理量。非平衡电桥的基本原理是通过桥式电路来测量电阻,根据 电桥输出的不平衡电压,再进行简单的线性运算处理,从而得到电阻的变化量,进而推算出引起 电阻变化的其他物理量。

第二部分 实验原理和方法

2.1 实验器材

直流稳压电源、3 个分度值为 0.1Ω 的电阻箱,1 个分度值为 0.01Ω 的电阻箱、万用表(用作 伏特表)、Keithy2000(用作微伏表)、铜丝(漆包线)、加热台、温度计、导线等。

2.2 实验原理

直流非平衡电桥原理如图 1 所示, 当 $\frac{R_3}{R_2} = \frac{R_4}{R_1}$ 时, 电桥平衡。 $U_g = 0$ 。当用 $R_4 + \Delta R$ 代替 R_4 时, $\frac{R_3}{R_2} \neq \frac{R_4 + \Delta R}{R_1}$, 此时 $U_g \neq 0$, 为非平衡状态。

图 2.1 非平衡电桥电路图

第2页,共12页

U_q使用理想高精度电压表测出。用电路分析有关知识,输出的非平衡电压为:

$$U_g = \frac{R_2 R_4 + R_2 \Delta R - R_1 R_3}{(R_1 + R_4)(R_2 + R_3) + \Delta R(R_2 + R_3)} U_s \quad (1)$$

本实验中,为简化计算,使用等臂电桥,代入等臂条件: $R_1 = R_2 = R_3 = R_4 = R_0$,并称电阻的应变量为 $\delta = \frac{\Delta R}{R_0}$ 。将其代入 (1) 式,得到:

$$U_g = \frac{U_s}{4} \delta \frac{1}{1 + \frac{1}{2}\delta} \quad (2)$$

若 $\Delta R \ll R_0$, 即 $\delta \rightarrow 0$ 时, 有:

$$U_g = \frac{U_s}{4}\delta = \frac{U_s}{4R_0}\Delta R \quad (3)$$

这样,非平衡电桥输出电压 U_g 与桥臂电阻的变化量 ΔR 成正比,为线性关系。 若 ΔR 较大,(2) 式中的 $\frac{\delta}{2}$ 项不能省略,此时 U_g 与 δ 呈非线性关系。

第三部分 实验内容和步骤

3.1 实验一:研究非平衡电桥的输出的线性范围和灵敏度

用外接电阻箱法研究非平衡电桥的 $U_g 与 \delta$ 关系,作出 $U_g - \delta$ 曲线,并对此实验曲线与理想 直线(式(3))之间进行误差分析,以确定电桥输出的线性范围和灵敏度。

实验步骤如下:

- (1) 调节电源输出电压,同时用万用表直流电压档来校准,使其输出电压为 $U_s = 2.0$ V。电路如图 1 所示并用导线连接好,用高精度台式万用表(Keithy2000)来测量 U_g 。
- (2) 先取电桥为等臂,即: $R_1 = R_2 = R_3 = R_4 = R_0 = 1k\Omega$,由于导线存在有一定的电阻,微调 R_3 的值,使 U_q 为零,此时电桥平衡,并记录 R_3 的具体值。
- (3) 改变 R_4 从 800 至 1200 Ω ,每次变化量为 20 Ω ,按顺序记下各 U_g 的值,作出 $U_g \delta$ 曲线。
- (4) 根据公式(3) 过原点作一条直线 $U_g^{\text{理论}} = \delta$,并与实际测量的 $U_g^{\text{sym}} = \delta$ 曲线进行比较,得出 $U_q = \delta$ 的线性关系成立的 δ 取值范围。
- (5) 测算在此桥臂电阻值下,电桥在零点附近的绝对灵敏度。

3.2 实验二:研究桥臂电阻对非平衡电桥的输出的线性范围和灵敏度的影响

保持电源电压 $U_s = 2.0V$ 不变,改变 R_0 的值,研究非平衡电桥的线性范围和灵敏度与 R_0 的关系。

实验步骤如下:

第3页,共12页

- 电路图仍如图 1 所示,保持电源电压 U_s = 2.0V 不变,取电桥为等臂,即 R₁ = R₂ = R₃ = R₄ = R₀, R₀ 改取 5000Ω 和 50Ω,微调 R₃ 的值,使 U_g 为零,此时电桥平衡,并记录 R₃ 的 具体值。
- (2) 改变 R_4 的阻值,每次改变量为 $\frac{R_4}{2\%}$ 。取值范围取 $(R_0-20\%R_0, R_0+20\%R_0)$ 。记录桥路输出 电压数据,画图测算线性范围,并计算电桥在零点附近的绝对灵敏度。
- (3) 结合实验一数据,分析 $U_g = \delta$ 之间近似满足线性关系时的 R_4 取值范围,此范围的长度 ΔR_4 与 R_0 大小之间的关系;同时分析实测零点绝对灵敏度大小与 R_0 大小之间的关系。

3.3 实验三: 使用非平衡电桥测量铜丝的电阻温度系数

利用搭建的直流非平衡电桥,测量并记录铜丝的电阻,以及其电阻随温度的改变值。计算铜 丝的电阻温度系数,在 0°C 和 20°C 时的值和不确定度。 实验步骤如下:

- (1) 由于铜丝电阻较小,取桥臂电阻为 50 Ω ,用 Keithy2000 来测量桥路输出电压 U_g 。保持恒压 源输出电压为 2.0V,微调 R_3 的值,使 U_g 尽可能的小 (< |0.01mV|),并记录对应的 U_{g0min} 。
- (2)把 3m 长,直径为 0.60mm 的铜丝(漆包线)串联到 R₄所在的桥臂上。把铜丝浸没在陶瓷杯内的水中,用温度计测量水温 t,记录水温并测量当前水温下桥路输出电压 U_g(t)值,并与没有串联铜丝时 U_{g0min}比较。
- (3) 用加热台对杯子里水进行加热,铜丝温度缓慢上升。每隔 5°C 记录一下对应的 U_g(t),直到 85°C 为止。
- (4) 根据各个不同温度点下的 U_g(t) 值(与没有串联铜丝时 U_{g0min} 比较),利用简单的线性关系 (式(3)),计算出铜丝在各个温度点下的电阻值 R_{Cu(t)},并作出 R_{Cu(t)} - t 的散点图以及拟 合直线。求出拟合直线的斜率,并推算 0°C 和 20°C 时的铜丝电阻。
- (5) 根据电阻温度系数定义式 $\alpha_T = k/R_T$, 计算铜丝的在 0°*C* 和 20°*C* 处的电阻温度系数 α_t , 以 及在 P = 95% 置信概率下的相对不确定度 u_{α}/α 和绝对不确定度 u_{α} (A 类不确定度)。

第四部分 实验数据和分析

4.1 实验一:研究非平衡电桥的输出的线性范围和灵敏度

4.1.1 实验数据

4.1.2 测算线性关系成立范围

根据此表做出 $U_g - \delta$ 拟合曲线。根据公式 (3) 过原点做一条直线 $U_g^{\text{理论}} = 500\delta$, 令 $U_{\delta} = \frac{|U_g^{\text{EW}} - U_g^{\text{TEV}}|}{|U_g^{\text{TEV}}|}$, 并做出 $U_{\delta} - \delta$ 关系图, 当 $U_{\delta} < 0.05$ 时,即认为 $U_g - \delta$ 线性关系成立。

第4页,共12页

信息科	学技术学	^室 院 P	B22051	.031 李潔	殺 PH	YS1009)B.02	2023 年	三10月	16 日	
表 1: $R_0 = 1k\Omega$ 时,桥路二端点 C、D 输出电压差与桥臂电阻改变量 ΔR 的关系 ($R_3 = 1000.06\Omega$)											
R_4/Ω	800	820	840	860	880	900	920	940	960	980	1000
$\Delta R = R_4 - R_0 / \Omega$	-200	-180	-160	-140	-120	-100	-80	-60	-40	-20	0
$\delta = \Delta R / R_0$	-20%	-18%	-16%	-14%	-12%	-10%	-8%	-6%	-4%	-2%	0%
$U_g(mV)$	-111.249	-99.034	-87.082	-75.389	-63.944	-52.742	-41.772	-31.027	-20.502	-10.189	-0.005
R_4/Ω	1020	1040	1060	1080	1100	1120	1140	1160	1180	1200	
$\Delta R = R_4 - R_0 / \Omega$	20	40	60	80	100	120	140	160	180	200	
$\delta = \Delta R / R_0$	2%	4%	6%	8%	10%	12%	14%	16%	18%	20%	
$U_g(mV)$	9.906	19.615	29.136	38.475	47.631	56.619	65.439	74.095	82.593	90.932	

中国科学技术大学物理实验报告

图 4.1.1 $R_0 = 1000\Omega$ 时 $U_g^{\text{理论}} - \delta$ 直线以及 $U_g^{\text{实际}} - \delta$ 拟 合曲线

图 4.1.2 $R_0 = 1000\Omega$ 时 $U_{\delta} - \delta$ 关系图

如图 4.1.1, 图 4.1.2 所示, $U_g - \delta$ 线性关系成立的 δ 取值范围为 $-0.09082 < \delta < 0.10584$, 与理论值: $-0.09524 < \delta < 0.10526$ 左误差为 4.64%, 右端点误差为 0.55%, 均小于 5%, 误差在 合理范围内。此时 R_4 取值范围为 909.18 $\Omega < R_4 < 1105.84\Omega$ 。

4.1.3 测算电桥在零点附近的绝对灵敏度

绝对灵敏度的公式为 $S = \lim_{\Delta R \to 0} \frac{\Delta U_g}{\Delta R} = \frac{1}{R_0} \lim_{\Delta \delta \to 0} \frac{\Delta U_g}{\Delta \delta}$,因此,可以对 4.1.1 中的拟合 曲线进行求导,得到 $\lim_{\Delta \delta \to 0} \frac{\Delta U_g}{\Delta \delta} - \delta$ 关系,如图 4.1.3 所示的曲线所示。再除以 R_0 值即可得 到绝对灵敏度 S。

第5页,共12页

图 4.1.3 $R_0 = 1000\Omega$ 时 $U_g^{gk} - \delta$ 拟合曲线的导数曲线

如图 4.1.3 所示,在 $\delta = 0$ 处,绝对灵敏度为 0.502375mV/ Ω

4.2 实验二:研究桥臂电阻对非平衡电桥的输出的线性范围和灵敏度的影响

4.2.1 当 *R*₀=5000Ω 时

实验数据如下表

R_4/Ω	4000	4100	4200	4300	4400	4500	4600	4700	4800	4900	5000
$\Delta R = R_4 - R_0 / \Omega$	-1000	-900	-800	-700	-600	-500	-400	-300	-200	-100	0
$\delta = \Delta R/R_0$	-20%	-18%	-16%	-14%	-12%	-10%	-8%	-6%	-4%	-2%	0%
$U_g(mV)$	-111.181	-98.966	-87.018	-75.323	-63.877	-52.674	-41.701	-30.978	-20.433	-10.122	0.001
R_4/Ω	5100	5200	5300	5400	5500	5600	5700	5800	5900	6000	
$\Delta R = R_4 - R_0 / \Omega$	100	200	300	400	500	600	700	800	900	1000	
$\delta = \Delta R/R_0$	2%	4%	6%	8%	10%	12%	14%	16%	18%	20%	
$U_a(mV)$	9.905	19.615	29.138	38.480	47.642	56.632	65.453	74.111	82.609	90.973	

表 2: $R_0 = 5k\Omega$ 时,桥路二端点 C、D 输出电压差与桥臂电阻改变量 ΔR 的关系 ($R_3 = 5000.34\Omega$)

同实验一,根据此表做出 $U_g - \delta$ 拟合曲线。根据公式(3) 过原点做一条直线 $U_g^{\mathbb{H}\hat{v}} = 500\delta$, 令 $U_\delta = \frac{|U_g^{\mathbb{H}\hat{w}} - U_g^{\mathbb{H}\hat{v}}|}{|U_g^{\mathbb{H}\hat{v}}|}$,并做出 $U_\delta - \delta$ 关系图。

如图 4.2.1,图 4.2.2 所示, $U_g - \delta$ 线性关系成立的 δ 取值范围为 $-0.09365 < \delta < 0.10633$,与理论值: $-0.09524 < \delta < 0.10526$ 左误差为 1.67%,右端点误差为 1.02%,均小于 5%,误差在合理范围内。此时 R_4 取值范围为 4531.75 $\Omega < R_4 < 5531.65\Omega$ 。

图 4.2.3 $R_0 = 5000\Omega$ 时 $U_g^{gk} - \delta$ 拟合曲线的导数曲线

同实验一方法,如图 4.2.3 所示,在 $\delta = 0$ 处,绝对灵敏度为 0.100135mV/ Ω

4.2.2 当 *R*₀=**50**Ω 时

实验数据如下表

同实验一,根据此表做出 $U_g - \delta$ 拟合曲线。根据公式(3) 过原点做一条直线 $U_g^{\mathbb{H}\hat{v}} = 500\delta$, 令 $U_\delta = \frac{|U_g^{\mathbb{H}\hat{v}} - U_g^{\mathbb{H}\hat{v}}|}{|U_g^{\mathbb{H}\hat{v}}|}$,并做出 $U_\delta - \delta$ 关系图。

第7页,共12页

信息科	学技术学	² 院 P	B22051	031 李	毅 PE	IYS1009	9B.02	2023 쥑	= 10 月	16 日	
表 3: $R_0 = 50\Omega$ 时,桥路二端点 C、D 输出电压差与桥臂电阻改变量 ΔR 的关系 ($R_3 = 50.01\Omega$											
R_4/Ω	40	41	42	43	44	45	46	47	48	49	50
$\Delta R = R_4 - R_0 / \Omega$	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
$\delta = \Delta/R_0$	-20%	-18%	-16%	-14%	-12%	-10%	-8%	-6%	-4%	-2%	0%
$U_g(mV)$	-110.909	-98.773	-86.802	-75.17	-63.679	-52.562	-41.574	-30.884	-20.352	-10.083	-0.025
R_4/Ω	51	52	53	54	55	56	57	58	59	60	
$\Delta R = R_4 - R_0 / \Omega$	1	2	3	4	5	6	7	8	9	10	
$\delta = \Delta/R_0$	2%	4%	6%	8%	10%	12%	14%	16%	18%	20%	
$U_g(mV)$	9.854	19.583	29.063	38.422	47.539	56.536	65.32	74.008	82.451	90.799	

中国科学技术大学物理实验报告

曲线

如图 4.3.1,图 3.3.2 所示, $U_g - \delta$ 线性关系成立的 δ 取值范围为 $-0.09791 < \delta < 0.10183$,与理论值: $-0.09524 < \delta < 0.10526$ 左误差为 2.80%,右端点误差为 3.26%,均小于 5%,误差在 合理范围内。此时 R_4 取值范围为 45.1045 $\Omega < R_4 < 55.0915\Omega$ 。

第8页,共12页

图 4.3.3 $R_0 = 50\Omega$ 时 $U_g^{gk} - \delta$ 拟合曲线的导数曲线

同实验一方法,如图 4.3.3 所示,在 $\delta = 0$ 处,绝对灵敏度为 9.9685 mV/Ω

4.2.3 总结

综合在 $R_0 = 1000\Omega$, $R_0 = 5000\Omega$, $R_0 = 50\Omega$ 下的三组数据,发现 R_0 越大, $U_g - \delta$ 线性关系成立的 δ 取值范围越大,零点绝对灵敏度越小。

4.3 实验三: 使用非平衡电桥测量铜丝的电阻温度系数

测量结果如下表所示。由 $R = 4 \frac{U_g - U_{gmin}}{U_S}$ 。有 $U_{gmin} = 0.062 mV$ (此电阻箱分度值下的最小值)。

	————————————————————————————————————												
$T/^{\circ}C$	27.8	30	35	40	45	50	55	60	65	70	75	80	85
U_g/mV	2.179	2.198	2.233	2.267	2.298	2.34	2.379	2.425	2.466	2.509	2.545	2.583	2.62
R/Ω	0.2117	0.2136	0.2171	0.2205	0.2236	0.2278	0.2317	0.2363	0.2404	0.2447	0.2483	0.2521	0.2558

表 4: 不同温度下对应的铜丝电阻

图 5 温度与铜丝电阻的关系

如图 5 所示, $R_{Cu} = 7.802 \times 10^{-4}t + 0.1895$ 。由此计算出在 0°*C* 和 20°*C* 时铜丝电阻的拟合 值分别为 0.1895Ω 和 0.2051Ω。根据电阻温度系数定义公式 $\alpha_T = \frac{k}{R_T}$, 铜丝在 0°*C* 和 20°*C* 时 电阻温度系数为 0.00412(°*C*)⁻¹ 和 0.00380(°*C*)⁻¹。

由图 5,相关系数 r = 0.99937斜率 k 的标准不确定度 $u_k = k\sqrt{\frac{1/r^2 - 1}{13 - 2}} = 8.354 \times 10^{-6}$ 截距 b 的标准不确定度 $u_b = \sqrt{x^2}u_k = 4.861 \times 10^{-4}$ 设斜率与截距的相关系数为 0,则 相对不确定度 $\frac{u_{\alpha}}{\alpha} = \sqrt{(\frac{u_k}{k})^2 + (\frac{u_b}{b})^2} = 0.011$ 。 20°C 时绝对不确定度 $u_{\alpha_{20}} = 4.18 \times 10^{-5}$ 。 根据铜丝参数 $\rho = 0.0175\Omega \times \frac{mm^2}{m}; l = 3m; \Phi = 0.60mm$,得出 20°C 下,铜丝电阻为 0.1857 Ω 。 与实验结果的误差达到了 10.4%。猜测可能是因为铜丝漆包线破损导致漏电使得电阻变大。

第五部分 思考题

6.1 简述直流非平衡电桥与直流平衡电桥的关系

直流平衡电桥是把待测电阻与标准电阻进行比较,通过调节电桥平衡,从而测得待测电阻值。 非平衡电桥的基本原理是通过桥式电路来测量电阻,根据电桥输出的不平衡电压,再进行简单的 线性运算处理,从而得到电阻的变化量。

因此,直流非平衡电桥可以看作是直流平衡电桥的一种扩展应用形式,用于测量无法通过平 衡条件精确测量的连续变化的物理量。

第10页,共12页

6.2 为什么在实验内容 1 中, ΔR_4 的绝对值相同时, R_4 小于 1000Ω 时的 U_g 值比 R_4 大于 1000Ω 时的 U_g 值, 绝对值大?

由(2)式

$$U_g = \frac{U_s}{4} \delta \frac{1}{1 + \frac{1}{2}\delta} \quad (2)$$

求导得

$$U_{g}^{'} = \frac{U_{s}}{4} \frac{4}{(2+\delta)^{2}}$$

故当 $\delta < 0$ 时的 U'_g 大于 $\delta > 0$ 时的 U'_g , R_4 小于 1000 Ω 时的 U_g 变化率更大, 故在 ΔR_4 的 绝对值相同时, U_g 的绝对值更大。此点在图 4.1.3, 图 4.2.3, 图 4.3.3 中也有体现。

6.3 假设用非平衡电桥来测量一个热敏电阻的电阻值随温度的变化, U_s = 2.0V, 毫 伏表最小刻度为 1 mV, 在室温(35°*C*)到 85°*C* 度范围内, 热敏电阻的电阻值改变 50 Ω。取等臂电桥, 为了保证测量的灵敏度(即: 每隔 5°*C* 读一次输出电压值, 变 化量不小于 1mV)并且保持(与理论线性之间的)误差小于 5% 的线性范围,请问 R_0 取多少比较合适?(指取值范围的上、下限。)

 $\delta = \frac{\Delta R}{R_0}$ 的理论范围为 $-\frac{10}{105} < \delta < \frac{10}{95}$,本实验中要求量程为 50Ω,初始处于零点位置,同时并不确定热敏电阻是正温度系数还是负温度系数,因此取 δ 小值进行计算。代入 $\Delta R = 50\Omega$ 得 到 $R_0 = 525\Omega$ 。故下限为 $R_0 = 525\Omega$ 。

理论上电桥在零点附近的绝对灵敏度 $S = \lim_{\Delta R \to 0} \frac{\Delta U_g}{\Delta R} = \frac{U_s}{4R_0}$ 本实验中要求电阻改变 5Ω 电压改变不小于 1mV,即在零点附近的绝对灵敏度不小于 $0.2mV/\Omega$,即为 $R_0 < 2500\Omega$ 。

故 $525\Omega < R_0 < 2500\Omega$ 。

6.4 把计算出来的 Cu 丝电阻温度系数(t=20°C)与参考值 0.00393(°C)⁻¹ 进行比 较,并分析测量的精确程度,以及产生误差的可能原因。

测量值为 0.00380(°C)⁻¹,误差为 3.3%。由于实验中测量温度方法较为粗糙,可能存在测量 温度不准确;同时不同的 Cu 丝可能有微小的差异,导致温度系数不同。因此该误差可以认为在 合理范围内。

第六部分 结论

通过本次实验,我们得知了非平衡电桥的线性区间和灵敏度受到桥臂电阻 R_0 的影响, R_0 越大, $U_g - \delta$ 线性关系成立的 δ 取值范围越大,即非平衡电桥的量程越大,但同时零点绝对灵敏度越小,测量精度下降。

非平衡电桥具有精度高、响应速度快、适用范围广等优点,通过使用非平衡电桥,可以精密测 量电阻。除了用来测量铜丝的电阻温度系数,在工程中,非平衡电桥还被广泛应用于传感器、仪

第11页,共12页

中国科学技术大学物理实验报告

信息科学技术学院 PB22051031 李毅 PHYS1009B.02 2023 年 10 月 16 日

器仪表、自动控制系统等领域,为各行各业的产品和系统提供了更精准的测量手段,有助于提高工业生产效率和产品质量。

致谢

感谢中国科学技术大学物理实验教学中心和郭玉刚老师